
h – Operations Research h02buc

nag ip mps read (h02buc)

1. Purpose

nag ip mps read (h02buc) reads data for a linear, quadratic, or integer programming problem from
a file which is in standard or compatible MPSX input format.

2. Specification

#include <nag.h>
#include <nagh02.h>

void nag_ip_mps_read(char *mps_file, Boolean minimize, Integer *n,
Integer *m, double **a, double **bl, double **bu,
Boolean **intvar, double **cvec, double **x,
Nag_H02_Opt *h02_options, NagError *fail)

3. Description

nag ip mps read reads linear programming (LP), linear terms of quadratic programming (QP), or
integer programming (IP) problem data from a file which is prepared in standard or compatible
MPSX (unattributed (1971)) input format and then initializes n (the number of variables), m (the
number of general linear constraints), the m by n matrix A, and the vectors l, u and c for use with
functions which are designed to solve problems of the form

minimize
x∈Rn

f(x) subject to l ≤
{

x
Ax

}
≤ u, (1)

where f(x) is a linear function (of the form cT x) or a quadratic function (of the form cT x+ 1
2xT Hx).

Note that for quadratic problems, nag ip mps read reads only the linear part of the objective;
the quadratic part must be supplied separately to the solver. See the documentation for the
appropriate solver for further details. (nag ip mps read is primarily designed for use with nag ip bb
(h02bbc), but may also be used in conjunction with nag opt lp (e04mfc), nag opt lin lsq (e04ncc)
and nag opt qp (e04nfc)).

Since, in general, the exact size of the problem defined by an MPSX file may not be known in
advance, the arrays returned by nag ip mps read are all allocated internally.

MPSX Input Format

The MPSX data file may only contain two types of line:

(1) Indicator lines (specifying the type of data which is to follow).

(2) Data lines (specifying the actual data).

The input file must not contain any blank lines. Any characters beyond column 80 are ignored.
Indicator lines must not contain leading blank characters (in other words they must begin in
column 1). The following displays the order in which the indicator lines must appear in the file:

NAME user-supplied name
ROWS

data line(s)
COLUMNS

data line(s)
RHS

data line(s)
RANGES (optional)

data line(s)
BOUNDS (optional)

data line(s)
ENDATA

The ‘user-supplied name’ specifies a name for the problem and must occupy columns 15-22. The
name can either be blank or up to a maximum of 8 characters.

[NP3491/6] 3.h02buc.1

nag ip mps read NAG C Library Manual

A data line follows the same fixed format made up of fields defined below. The contents of the
fields may have different significance depending upon the section of data in which they appear.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2-3 5-12 15-22 25-36 40-47 50-61
Contents Code Name Name Value Name Value

The names and codes consist of ‘alphanumeric’ characters (i.e., a−z, A−Z, 0−9, +, −, asterisk (*),
blank (), colon (:), dollar sign ($) or full stop (.) only) and the names must not contain leading
blank characters. Values may be entered in several equivalent forms. For example, 1.2345678,
1.2345678e+0, 123.45678e−2 and 12345678E−07 all represent the same number. It is safest to
include an explicit decimal point. Note that the lower case ‘e’ exponential notation is not standard
MPSX, and if compatibility with other MPSX readers is required then the upper case notation
should be used. The lower case notation is supported by nag ip mps read since this is the natural
notation in a C programming language environment.

It is recommended that numeric values be right-justified in the 12-character field, with no trailing
blanks. This is to ensure compatibility with other MPSX readers, some of which may, in certain
situations, interpret trailing blanks as zeros. This can dramatically affect the interpretation of the
value and is relevant if the value contains an exponent, or if it contains neither an exponent nor an
explicit decimal point.

Comment lines are allowed in the data file. These must have an asterisk (*) in column 1 and any
characters in columns 2-80. In any data line, a dollar sign ($) as the first character in field 3 or 5
indicates that the information from that point through column 80 consists of comments.

Columns outside the six fields must be blank, except for columns 72-80, whose contents are ignored
by the routine. These columns may be used to enter a sequence number. A non-blank character
outside the predefined six fields and columns 72-80 is considered to be a major error unless it is
part of a comment.

ROWS Data Lines

These lines specify row (constraint) names and their inequality types (i.e., =, ≥ or ≤).

Field 1: defines the constraint type as follows (may be in column 2 or column 3):

N free row, i.e., no constraint. It may be used to define the objective row.

G greater than or equal to (i.e., ≥).

L less than or equal to (i.e., ≤).

E exactly equal to (i.e., =).

Field 2: defines the row name.

Row type N stands for ‘Not binding’, also known as ‘Free’. It can be used to define the objective
row. The objective row is a free row that specifies the vector c in the linear objective term cT x.
It is taken to be the first free row, unless some other free row name is specified by the optional
parameter obj name (see Section 7.2). Note that c is assumed to be zero if (for example) the line

%N%%DUMMYROW

(where % denotes a blank) appears in the ROWS section of the MPSX data file, and the row name
DUMMYROW is omitted from the COLUMNS section.

COLUMNS Data Lines

These lines specify the names to be assigned to the variables (columns) in the general linear
constraint matrix A, and define, in terms of column vectors, the actual values of the corresponding
matrix elements.

Field 1: blank (ignored).

Field 2: gives the name of the column associated with the elements specified in the following fields.

Field 3: contains the name of a row.

3.h02buc.2 [NP3491/6]

h – Operations Research h02buc

Field 4: used in conjunction with field 3; contains the value of the matrix element.

Field 5: is optional (may be used like field 3).

Field 6: is optional (may be used like field 4).

Note that only the non-zero elements of A and c need to be specified in the COLUMNS section,
as any unpsecified elements of A and c are assumed to be zero. In addition, any non-zero elements
in the jth column of A must be grouped together before those in the (j + 1)-th column, for
j = 1, 2, . . . ,n−1. Non-zero elements within a column may however appear in any order.

RHS Data Lines

This section specifies the right-hand side values of the general linear constraint matrix A (if any).
The lines specify the name to be given to the right-hand side (RHS) vector along with the numerical
values of the elements of the vector, which may appear in any order. The data lines have exactly
the same format as the COLUMNS data lines, except that the column name is replaced by the
RHS name. Only the non-zero elements need be specified. Note that this section may be empty,
in which case the RHS vector is assumed to be zero.

RANGES Data Lines (optional)

Ranges are used for constraints of the form l ≤ Ax ≤ u, where both l and u are finite. The effect of
specifying a range rj for constraint j depends on the type of the constraint (i.e., G, L or E), the sign
of rj , and the bound associated with the constraint in the RHS section. (Recall that this bound is
taken to be zero if the constraint has no entry in the RHS section.) The various possibilities may
be summarised as follows.

Row Type Sign of rj Bound from RHS Resultant lj Resultant uj

G + or − lj lj lj + |rj |
L + or − uj uj − |rj | uj

E + lj lj lj + rj

E − uj uj − |rj | uj

The data lines have exactly the same format as the COLUMNS data lines, except that the column
name is replaced by the RANGE name.

BOUNDS Data Lines (optional)

These lines specify limits on the values of the variables (l and u in l ≤ x ≤ u). If the variable is
not specified in the bound set then it is automatically assumed to lie between default lower and
upper bounds (usually 0 and +∞). (These default bounds may be reset to the values specified by
the optional parameters col lo default and col up default; see Section 7.2.) Like an RHS column
which is given a name, the set of variables in one bound set is also given a name.

Field 1: specifies the type of bound or defines the variable type as follows:

LO lower bound.

UP upper bound.

FX fixed variable.

FR free variable (−∞ to +∞).

MI lower bound is −∞.

PL upper bound is +∞. This is the default variable type.

Field 2: identifies a name for the bound set.

Field 3: identifies the column name of the variable belonging to this set.

Field 4: identifies the value of the bound; this has a numerical value only in association with LO,
UP, FX in field 1, otherwise it is blank.

Field 5: is blank and ignored.

[NP3491/6] 3.h02buc.3

nag ip mps read NAG C Library Manual

Field 6: is blank and ignored.

Note that if RANGES and BOUNDS sections are both present, the RANGES section must appear
first.

Integer Programming Problems

In IP problems there are two common integer variable types: (a) 0–1 integer variables (or ‘binary’
variables) which represent ‘on’ or ‘off’ situations and (b) general integer variables which are forced
to take an integer value, in a specified range, at the optimal integer solution. Integer variables can
be defined in the following compatible and standard MPSX forms.

In the compatible MPSX format, the type of integer variables are defined in field 1 of the BOUNDS
section, that is:

Field 1: specifies the type of the integer variable as follows:

BV 0-1 integer variable (bound value is 1.0).

UI general integer variable (bound value is in field 4).

In the standard MPSX format, the integer variables are treated the same as ‘ordinary’ bounded
variables, in the BOUNDS section. Integer markers are, however, introduced in the COLUMNS
section to specify the integer variables. The indicator lines for these markers are:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2-3 5-12 15-22 25-36 40-47 50-61
Contents name ’MARKER’ ’INTORG’

to mark the beginning of the integer variables and

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Columns 2-3 5-12 15-22 25-36 40-47 50-61
Contents name ’MARKER’ ’INTEND’

to mark the end. That is, any variables between these markers are treated as integer variables.
The name in Field 2 may be any name different from the preceding and following column names,
the other entries in the indicator lines must be exactly as described above (including quotation
marks). Note that if the INTEND indicator line is not specified then all columns between the
INTORG indicator line and the end of the COLUMNS section are assumed to be integer variables.
nag ip mps read accepts both standard and/or compatible MPSX format as a means of specifying
integer variables.

An example of the compatible MPSX format is given in Section 6 and an example of the standard
MPSX format is given in Section 12.

4. Parameters

mps file
Input: the name of the MPSX data file. If mps file is a null pointer or null string, then the
data is assumed to come from stdin.

minimize
Input: specifies the direction of the optimization. minimize must be set to TRUE for
minimization and to FALSE for maximization. For a maximization problem, c, the coefficients
of the linear part of the objective function, is negated with respect to its definition in the
MPSX file. For maximization problems involving a quadratic objective function, the user
must also modify the sign of the quadratic term as appropriate.

n
Output: n, the number of variables specified by the data file.

m
Output: m, the number of general linear constraints specified by the data file.

a
Output: A, the matrix of general linear constraints.

Sufficient memory is allocated internally by nag ip mps read and may be freed by the utility
function nag ip mps free (h02bvc).

3.h02buc.4 [NP3491/6]

h – Operations Research h02buc

bl
bu

Output: bl and bu hold the lower bounds and upper bounds, respectively, for all the variables
and constraints, in the following order. The first n elements contain the bounds on the
variables x and the next m elements contain the bounds for the general linear constraints Ax
(if any). Note that an ‘infinite’ lower bound is indicated by bl[j − 1] = −1020, an ‘infinite’
upper bound by bu[j − 1] = 1020, and an equality constraint by bl[j − 1] = bu[j − 1].

Sufficient memory is allocated internally by nag ip mps read and may be freed by the utility
function nag ip mps free (h02bvc).

intvar
Output: indicates which are the integer variables in the problem. More precisely, intvar[j−1]
= TRUE if xj is an integer variable, and FALSE otherwise, for j = 1, 2, . . . , n.

Sufficient memory is allocated internally by nag ip mps read and may be freed by the utility
function nag ip mps free (h02bvc).

cvec
Output: c, the coefficients of the linear term of the objective function. The signs of these
coefficients are determined by the problem and the direction of the optimization (see minimize
above).

Sufficient memory is allocated internally by nag ip mps read and may be freed by the utility
function nag ip mps free (h02bvc).

x
Output: an initial estimate of the solution to the problem. More precisely, x[j] =
min(max(0.0,bl[j]),bu[j]), for j = 0, 1, . . . , n − 1.

Sufficient memory is allocated internally by nag ip mps read and may be freed by the utility
function nag ip mps free (h02bvc).

options
Input/Output: a pointer to a structure of type Nag H02 Opt whose members are optional
parameters for nag ip mps read. These structure members offer the means of adjusting the
parameter values used when reading in the MPSX file and on output will supply further
details of the results. A description of the members of options is given below in Section 7.2.

If any of these optional parameters are required then the structure options should be
declared and initialised by a call to nag ip init (h02xxc) and supplied as an argument to
nag ip mps read. However, if the optional parameters are not required the NAG defined null
pointer, H02 DEFAULT, can be used in the function call.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialise fail and set fail.print = TRUE for this
function.

4.1. Description of Printed Output

Results are printed out by default. The level of printed output can be controlled by the user with
the structure members options.list and options.output level (see Section 7.2). If list = TRUE then
the parameter values to nag ip mps read are listed, whereas the printout of results is governed
by the value of output level. The default print level of Nag MPS Summary gives the following
information if the MPSX file has been read successfully:

(a) the number of lines read.

(b) the number of columns specified by the data. If any of these are specified as integer variables,
the number of such variables is also reported.

(c) the number of rows specified by the data. The objective row is counted amongst these.

[NP3491/6] 3.h02buc.5

nag ip mps read NAG C Library Manual

In addition, the names of the problem, the objective row, the RHS set, the RANGES set, and the
BOUNDS set read are listed. Unless specified otherwise by the optional parameters prob name,
obj name, rhs name, range name and/or bnd name (see Section 7), these names will correspond to
the first problem, objective row, etc., encountered in the MPSX file. Where no set was encountered
(RANGES and BOUNDS are optional), a ‘blank’ is output.

Additionally, when output level = Nag MPS List, each line of the MPSX file is echoed as it is read.
This may be useful as a debugging aid.

If output level=Nag NoOutput then printout will be suppressed; the user can print the information
contained in (b) and (c) when nag ip mps read returns to the calling program.

5. Comments

A list of possible error exits and warnings from nag ip mps read is given in Section 8.

6. Example 1

This example reads a compatible format MPSX file (see Section 3 for a description of standard and
compatible MPSX formats) which specifies an instance of the so-called diet problem, and solves it
as an LP problem. Given the nutritional content of a selection of foods, the cost of each food, the
amount available of each food and the consumer’s minimum daily energy requirements, the problem
is to find the cheapest combination. This gives rise to the following problem:

minimize

cT x subject to Ax ≥ b, 0 ≤ x ≤ u,

where

c = (3 24 13 9 20 19)T , x = (x1, x2, x3, x4, x5, x6)
T is real

A =


 110 205 160 160 420 260

4 32 13 8 4 14
2 12 54 285 22 80


 , b =


 2000

55
800


 and

u = (4 3 2 8 2 2)T .

The rows of A correspond to energy, protein and calcium and the columns of A correspond to
oatmeal, chicken, eggs, milk, pie and bacon respectively.

The following program calls nag ip mps read to read the MPSX file containing the data for this
problem and solves it as an LP problem by calling nag opt lp (e04mfc). Finally, nag ip mps free
(h02bvc) is called to free the memory allocated by nag ip mps read.

This example shows the simple use of nag ip mps read where default values are used for all optional
parameters. An example showing the use of optional parameters is given in Section 12. There is
one example program file, the main program of which calls both examples. The main program and
Example 1 are given below.

6.1. Program Text

/* nag_ip_mps_read (h02buc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
* Mark 6 revised, 2000.
*/
#include <nag.h>
#include <stdio.h>

3.h02buc.6 [NP3491/6]

h – Operations Research h02buc

#include <nag_stdlib.h>
#include <nage04.h>
#include <nagh02.h>

static void ex1(void);
static void ex2(void);

main()
{

Vprintf("h02buc Example Program Results.\n");
ex1();
ex2();
exit(EXIT_SUCCESS);

}

static void ex1(void)
{

Integer n, m;
double *a, *c, *bl, *bu, *x, objf;
Boolean *intvar;
static NagError fail;

Vprintf("\nExample 1: default options used.\n");

fail.print = TRUE;

/* Read MPSX data */
h02buc(0, TRUE, &n, &m, &a, &bl, &bu, &intvar, &c, &x,

H02_DEFAULT, &fail);

/* Solve IP problem defined by data as an LP problem */
e04mfc(n, m, a, n, bl, bu, c, x, &objf, E04_DEFAULT, NAGCOMM_NULL, &fail);

/* Free memory allocated by h02buc */
h02bvc(&a, &bl, &bu, &intvar, &c, &x);

}

6.2. Program Data

* h02buc Example Program Data
*
* Example 1 data.
*
* This is an example of ’compatible format’ MPSX data.
*
*
NAME DIET
ROWS
G ENERGY
G PROTEIN
G CALCIUM
N COST
COLUMNS

OATMEAL ENERGY 110.0
OATMEAL PROTEIN 4.0
OATMEAL CALCIUM 2.0
OATMEAL COST 3.0
CHICKEN ENERGY 205.0
CHICKEN PROTEIN 32.0
CHICKEN CALCIUM 12.0
CHICKEN COST 24.0
EGGS ENERGY 160.0
EGGS PROTEIN 13.0
EGGS CALCIUM 54.0
EGGS COST 13.0
MILK ENERGY 160.0
MILK PROTEIN 8.0
MILK CALCIUM 285.0
MILK COST 9.0
PIE ENERGY 420.0
PIE PROTEIN 4.0

[NP3491/6] 3.h02buc.7

nag ip mps read NAG C Library Manual

PIE CALCIUM 22.0
PIE COST 20.0
BACON ENERGY 260.0
BACON PROTEIN 14.0
BACON CALCIUM 80.0
BACON COST 19.0

RHS
DEMANDS ENERGY 2000.0
DEMANDS PROTEIN 55.0
DEMANDS CALCIUM 800.0

BOUNDS
UI SERVINGS OATMEAL 4.0
UI SERVINGS CHICKEN 3.0
UP SERVINGS EGGS 2.0
UP SERVINGS MILK 8.0
UP SERVINGS PIE 2.0
UI SERVINGS BACON 2.0
ENDATA

6.3. Program Results

h02buc Example Program Results.

Example 1: default options used.

Parameters to h02buc

prob_name............... (first)
obj_name................ (first) rhs_name................ (first)
range_name.............. (first) bnd_name................ (first)
col_lo_default.......... 0.00e+00 col_up_default.......... 1.00e+20
ncol_approx............. 100 nrow_approx............. 100
output_level......Nag_MPS_Summary
outfile................. stdout

The MPS file has successfully been read.
Number of lines read: 50
Number of columns: 6 (of which 3 are integers)
Number of rows: 4 (including objective row)

MPS Names Selected:
Problem DIET
Objective COST RHS DEMANDS
RANGES BOUNDS SERVINGS

MPS data successfully assigned to problem data.

Parameters to e04mfc

Linear constraints............ 3 Number of variables........... 6

prob.................... Nag_LP start................... Nag_Cold
ftol.................... 1.05e-08 reset_ftol.............. 5
fcheck.................. 50 crash_tol............... 1.00e-02
inf_bound............... 1.00e+20 inf_step................ 1.00e+20
max_iter................ 50 machine precision....... 1.11e-16
optim_tol............... 1.72e-13 min_infeas.............. FALSE
print_level......... Nag_Soln_Iter
outfile................. stdout

Memory allocation:
state................... Nag
ax...................... Nag lambda.................. Nag

3.h02buc.8 [NP3491/6]

h – Operations Research h02buc

Results from e04mfc:

Itn Jdel Jadd Step Ninf Sinf/Obj Bnd Lin Nart Nrz Norm Gz

0 0 0 0.0e+00 3 2.8550e+03 6 0 0 0 0.00e+00
1 4 L 4 U 1.8e-02 1 7.2000e+02 6 0 0 0 0.00e+00
2 5 L 7 L 4.1e-03 0 1.0629e+02 5 1 0 0 0.00e+00
3 1 L 1 U 1.9e+00 0 9.7333e+01 5 1 0 0 0.00e+00
4 4 U 5 U 2.9e+00 0 9.2500e+01 5 1 0 0 0.00e+00

Final solution:

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 UL 4.00000e+00 0.0000e+00 4.0000e+00 -3.187e+00 0.000e+00
V 2 LL 0.00000e+00 0.0000e+00 3.0000e+00 1.247e+01 0.000e+00
V 3 LL 0.00000e+00 0.0000e+00 2.0000e+00 4.000e+00 0.000e+00
V 4 FR 4.50000e+00 0.0000e+00 8.0000e+00 0.000e+00 3.500e+00
V 5 UL 2.00000e+00 0.0000e+00 2.0000e+00 -3.625e+00 0.000e+00
V 6 LL 0.00000e+00 0.0000e+00 2.0000e+00 4.375e+00 0.000e+00

LCon State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 LL 2.00000e+03 2.0000e+03 None 5.625e-02 -2.274e-13
L 2 FR 6.00000e+01 5.5000e+01 None 0.000e+00 5.000e+00
L 3 FR 1.33450e+03 8.0000e+02 None 0.000e+00 5.345e+02

Exit after 4 iterations.

Optimal LP solution found.

Final LP objective value = 9.2500000e+01

7. Optional Parameters

A number of optional input and output parameters to nag ip mps read are available through the
structure argument options, type Nag H02 Opt. A parameter may be selected by assigning an
appropriate value to the relevant structure member; those parameters not selected will be assigned
default values. If no use is to be made of any of the optional parameters the user should use
the NAG defined null pointer, H02 DEFAULT, in place of options when calling nag ip mps read; the
default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialised by a call to the function
nag ip init (h02xxc). Values may then be assigned to the structure members in the normal C
manner.

Option settings may also be read from a text file using the function nag ip read (h02xyc) in which
case initialisation of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialisation.

7.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag ip mps read together with their default values where relevant.

Boolean list TRUE
Nag OutputType output level Nag MPS Summary
char outfile[80] stdout
char prob name[9] ’\0’
char obj name[9] ’\0’
char rhs name[9] ’\0’
char range name[9] ’\0’
char bnd name[9] ’\0’
double col lo default 0.0
double col up default 1020

Integer ncol approx 100

[NP3491/6] 3.h02buc.9

nag ip mps read NAG C Library Manual

Integer nrow approx 100
char **crnames size n+m
Integer n ivar

7.2. Description of Optional Parameters

list – Boolean Default = TRUE

Input: if options.list = TRUE the parameter settings in the call to nag ip mps read will be
printed.

output level – Nag OutputType Default = Nag MPS Summary

Input: the level of printout produced by nag ip mps read. The following values are available.

Nag NoOutput No output.

Nag MPS Summary A summary of the dimensions of the problem read and a list of the
‘MPSX names’ (problem name, objective row name, etc.).

Nag MPS List As Nag MPS Summary but each line of the MPSX file is echoed
as it is read. This can be useful for debugging the file.

Constraint: options.output level = Nag NoOutput, Nag MPS Summary or Nag MPS List.

outfile – char[80] Default = stdout

Input: the name of the file to which results should be printed. If options.outfile[0] = ’\0’ then
the stdout stream is used.

prob name – char[9] Default: prob name[0] = ’\0’
obj name – char[9] Default: obj name[0] = ’\0’
rhs name – char[9] Default: rhs name[0] = ’\0’
range name – char[9] Default: range name[0] = ’\0’
bnd name – char[9] Default: bnd name[0] = ’\0’

Input: these options contain the names associated with the MPSX form of the problem.
These names must be specified as follows:

prob name must contain the name of the problem to be read or be blank. The problem
name is specified in the NAME indicator line (see Section 3) and if prob name
is not blank, then nag ip mps read will search the MPSX file for the specified
problem. If prob name is blank, then the first problem encountered will be read.

obj name must contain the name of the objective row or be blank (in which case the first
objective free row is used).

rhs name must contain the name of the RHS set to be used or be blank (in which case the
first RHS set is used).

range name must contain the name of the RANGES set to be used or be blank (in which
case the first RANGES set, if any, is used).

bnd name must contain the name of the BOUNDS set to be used or be blank (in which
case the first BOUNDS set, if any, is used).

Constraints: the names must be valid MPSX names, i.e., they must consist only of the
‘alphanumeric’ characters as specified in Section 3 and must not contain leading blank
characters.
Output: the members contain the appropriate names as read from the MPSX file. Any names
specified on input which are not found in the MPSX file are unchanged on exit but will give
rise to an error exit from nag ip mps read (see Section 8).

col lo default – double Default = 0.0
Input: the default lower bound to be used for the variables in the problem when none is
specified in the BOUNDS section of the MPSX data file.

3.h02buc.10 [NP3491/6]

h – Operations Research h02buc

col up default – double Default = 1020

Input: the default upper bound to be used for the variables in the problem when none is
specified in the BOUNDS section of the MPSX data file.
Constraint: options.col up default ≥ options.col lo default.

ncol approx – Integer Default = 100
nrow approx – Integer Default = 100

Input: an estimate of the number of columns and rows in the problem. nag ip mps read
is designed so that the problem size does not have to be known in advance, and allocates
memory according to the data contained in the MPSX file. However, for very large problems,
an advance estimate of the problem size might allow slightly more efficient memory usage to
be achieved.
Constraints:

options.ncol approx > 0,

options.nrow approx > 0.

crnames – char ∗∗ Default memory n+m array of char ∗
Output: the MPSX names of all the variables and constraints in the problem in the following
order. crnames[j−1] contains the name of the jth column, for j = 1, 2, . . . ,n. crnames[n+i−1]
contains the name of the ith row, for i = 1, 2, . . . ,m. Each name is 8 characters long, and
includes any trailing blank characters which appear in the appropriate name field of the
MPSX file.

Sufficient memory to hold the names is allocated internally by nag ip mps read. The memory
freeing function nag ip free (h02xzc) should be used to free this memory. Users should not
use the standard C function free() for this purpose.

If, on return from nag ip mps read, nag ip bb (h02bbc) is called with options as an argument,
and the memory pointed to by crnames has not been freed, nag ip bb (h02bbc) will use the
row and column names stored in crnames in its solution output.

n ivar – Integer
Output: the number of integer variables specified by the data file.

8. Error Indications and Warnings

NE NULL ARGUMENT
Argument n is a null pointer. It should contain the address of a variable of type Integer.
Argument m is a null pointer. It should contain the address of a variable of type Integer.
Argument a is a null pointer. It should contain the address of a variable of type double ∗.
Argument bl is a null pointer. It should contain the address of a variable of type double ∗.
Argument bu is a null pointer. It should contain the address of a variable of type double ∗.
Argument intvar is a null pointer. It should contain the address of a variable of type Boolean ∗.
Argument cvec is a null pointer. It should contain the address of a variable of type double ∗.
Argument x is a null pointer. It should contain the address of a variable of type double ∗.

NE OPT NOT INIT
Options structure not initialized.

NE BAD PARAM
On entry, parameter options.prob name had an illegal value.
On entry, parameter options.obj name had an illegal value.
On entry, parameter options.rhs name had an illegal value.
On entry, parameter options.range name had an illegal value.
On entry, parameter options.bnd name had an illegal value.
On entry, parameter options.output level had an illegal value.

NE 2 REAL EE OPT ARG CONS
On entry, options.col lo default = 〈value〉 while options.col up default = 〈value〉.
Constraint: options.col lo default ≤ options.col up default.

[NP3491/6] 3.h02buc.11

nag ip mps read NAG C Library Manual

NE INT OPT ARG LT
On entry, options.nrow approx = 〈value〉. Constraint: nrow approx ≥ 1
On entry, options.ncol approx = 〈value〉. Constraint: ncol approx ≥ 1

NE NAMES NOT NAG MEM
options.crnames is not null but does not point to memory allocated by an earlier call to this
function. This function does not accept user-allocated memory assigned to crnames.

NE MPS PROB NOT FOUND
The specified problem has not been found in the MPSX file.

NE MPS ILLEGAL DATA LINE
An illegal data line has been read from the MPSX file. This is neither a comment nor a legal
data line.
Error at MPSX line 〈value〉: 〈string〉.

NE MPS ILLEGAL NAME
An illegal row or column name has been detected. Names must contain only alphanumeric
characters with no leading blanks.
Error at MPSX line 〈value〉: 〈string〉.

NE MPS ILLEGAL NUMBER
Number expected but value could not be read. Check numerical fields.
Error at MPSX line 〈value〉: 〈string〉.

NE MPS ILLEGAL SETNAME
An illegal name has been detected in field 2 of the RHS, RANGES or BOUNDS section.
Names must contain only alphanumeric characters with no leading blanks.
Error at MPSX line 〈value〉: 〈string〉.

NE MPS INVALID BND TYPE
An invalid bound type appears in the BOUNDS section. Expect: LO, UP, FX, FR, MI, PL,
BV or UI.
Error at MPSX line 〈value〉: 〈string〉.

NE MPS INVALID BND VAL
Invalid numeric field in bound data. Value expected for types: LO, UP, FX, UI. Blank field
expected for types: FR, MI, PL, BV.
Error at MPSX line 〈value〉: 〈string〉.

NE MPS INVALID INDICATOR
Unknown, unexpected or invalid indicator line read. Expect: NAME, ROWS, COLUMNS,
RHS, RANGES, BOUNDS or ENDATA, starting in column 1 of file, and in that order.
RANGES and/or BOUNDS may be omitted.
Error at MPSX line 〈value〉: 〈string〉.

NE MPS INVALID INTORG INTEND
An INTORG or INTEND marker is not correctly specified or is unexpected (e.g., INTEND
has no matching INTORG).
Error at MPSX line 〈value〉: 〈string〉.

NE MPS INVALID ROW TYPE
An invalid row type appears in the ROWS section. Expect: N, G, L or E.
Error at MPSX line 〈value〉: 〈string〉.

NE MPS NO COLS
There were no columns specified in the COLUMNS section.
Last MPSX line read (〈value〉): 〈string〉.

NE MPS NO NEWLINE
New line expected but not found.
Last MPSX line read (〈value〉): 〈string〉.

NE MPS NO OBJ
The objective row was not found. There must be at least one row of type N in the ROWS
section and, if an objective name was specified, there must be a type N row with this name.
Last MPSX line read (〈value〉): 〈string〉.

3.h02buc.12 [NP3491/6]

h – Operations Research h02buc

NE MPS NO ROWS
There were no rows specified in the ROWS section.
Last MPSX line read (〈value〉): 〈string〉.

NE MPS REPEAT ROW
A row has been specified more than once.
Error at MPSX line 〈value〉: 〈string〉.

NE MPS RHS RANGE BND NOT FOUND
The name of the RHS, RANGES or BOUNDS set to be used was not found in the file.

NE MPS ENDATA NOT FOUND
The file does not contain an ENDATA indicator.

NE MPS SPLIT COL
Column data is not contiguous. All entries for a given column must appear together in the
COLUMNS section.
Error at MPSX line 〈value〉: 〈string〉.

NE MPS UNKNOWN COLNAME
An unknown column name appears in the BOUNDS section. All the column names must be
specified in the COLUMNS section.
Error at MPSX line 〈value〉: 〈string〉.

NE MPS UNKNOWN ROWNAME
An unknown row name appears in the 〈string〉 section. All the row names must be specified
in the ROWS section.
Error at MPSX line 〈value〉: 〈string〉.

NE ALLOC FAIL
Memory allocation failed.

NE NOT APPEND FILE
Cannot open file 〈string〉 for appending.

NE WRITE ERROR
Error occurred when writing to file 〈string〉.

NE NOT CLOSE FILE
Cannot close file 〈string〉.

NE NOT READ FILE
Cannot open file 〈string〉 for reading.

NE INTERNAL ERROR
An internal error has occurred in this function. Check the function call and any array sizes.
If the call is correct then please consult NAG for assistance.

9. Further Comments

Although nag ip mps read is designed primarily for use with nag ip bb (h02bbc), it can also be used
in conjunction with nag opt lp (e04mfc) (as illustrated by example 1), nag opt lin lsq (e04ncc) and
nag opt qp (e04nfc). However, these last three functions do not provide a direct means of using
the row and column names which can be read by nag ip mps read and stored in the optional
parameter crnames. By making use of the user-defined printing facilities of the functions, the user
can customize the solution printing to print the row and column names (see Section 8.3.1 of the
documentation for the appropriate function). Alternatively, the user may call nag ip bb (h02bbc)
to solve the LP or QP problem by specifying all variables to be non-integer via the intvar parameter
(see Section 4 of the documentation for nag ip bb (h02bbc)).

10. References

(1971) Program Number 5734 XM4 MPSX - Mathematical programming system IBM Trade
Corporation, New York.

[NP3491/6] 3.h02buc.13

nag ip mps read NAG C Library Manual

11. See Also

nag opt lp (e04mfc)
nag opt lin lsq (e04ncc)
nag opt qp (e04nfc)
nag ip mps free (h02bvc)
nag ip bb (h02bbc)
nag ip init (h02xxc)
nag ip read (h02xyc)
nag ip free (h02xzc)

12. Example 2

This example reads in an MPSX file specifying the same IP problem as in example 1. Here the
problem is specified in the standard MPSX format (in example 1 it was presented in the compatible
MPSX format; see Section 3 for details of the standard and compatible MPSX formats). It is then
solved as an IP problem.

The following program calls nag ip read (h02xyc), which initialises the options structure and reads
optional parameter settings from the data file. The parameter settings supress all output from
nag ip mps read. The program then calls nag ip mps read to read the MPSX data and sets the
optional parameter list to TRUE before calling nag ip bb (h02bbc) to solve the IP problem. As
the options structure is passed as an argument, the row and column names read from the file are
stored in options.crnames and used in the solution output (see Section 12.3).

Finally, nag ip mps free (h02bvc) is called to free the problem arrays, and nag ip free (h02xzc) is
called to free the memory in options.

12.1. Program Text

static void ex2(void)
{

Integer n, m;
double *a, *c, *bl, *bu, *x, objf;
Boolean *intvar;
static NagError fail;
Nag_H02_Opt options;

Vprintf("\nExample 2: use of options structure.\n");

/* Initialise options structure and read option settings. */
h02xxc(&options);
h02xyc("h02buc", "stdin", &options, (Boolean)TRUE, "stdout", NAGERR_DEFAULT);

/* Read MPSX data */
fail.print = TRUE;
h02buc(0, TRUE, &n, &m, &a, &bl, &bu, &intvar, &c, &x,

&options, &fail);

/* Solve IP problem defined by data */
options.list = TRUE;
h02bbc(n, m, a, n, bl, bu, intvar, c, (double*)0, 0, NULLFN,

x, &objf, &options, NAGCOMM_NULL, &fail);

/* Free memory allocated by h02buc */
h02bvc(&a, &bl, &bu, &intvar, &c, &x);

/* Free options memory */
h02xzc(&options, "all", NAGERR_DEFAULT);

}

3.h02buc.14 [NP3491/6]

h – Operations Research h02buc

12.2. Program Data

* Example 2 data.
*
* This defines the same problem as Example 1 but
* is in the ’standard’ MPSX format.
*
* Options setting first:

BEGIN nag_ip_mps_read

list = FALSE
output_level = Nag_NoOutput
prob_name = DIET2

END

NAME DIET2
ROWS
G ENERGY
G PROTEIN
G CALCIUM
N COST
COLUMNS

OATMEAL ENERGY 110.0
OATMEAL PROTEIN 4.0
OATMEAL CALCIUM 2.0
OATMEAL COST 3.0
CHICKEN ENERGY 205.0
CHICKEN PROTEIN 32.0
CHICKEN CALCIUM 12.0
CHICKEN COST 24.0
INTEGER ’MARKER’ ’INTORG’
EGGS ENERGY 160.0
EGGS PROTEIN 13.0
EGGS CALCIUM 54.0
EGGS COST 13.0
MILK ENERGY 160.0
MILK PROTEIN 8.0
MILK CALCIUM 285.0
MILK COST 9.0
PIE ENERGY 420.0
PIE PROTEIN 4.0
PIE CALCIUM 22.0
PIE COST 20.0
INTEGER ’MARKER’ ’INTEND’
BACON ENERGY 260.0
BACON PROTEIN 14.0
BACON CALCIUM 80.0
BACON COST 19.0

RHS
DEMANDS ENERGY 2000.0
DEMANDS PROTEIN 55.0
DEMANDS CALCIUM 800.0

BOUNDS
UI SERVINGS OATMEAL 4.0
UI SERVINGS CHICKEN 3.0
UP SERVINGS EGGS 2.0
UP SERVINGS MILK 8.0
UP SERVINGS PIE 2.0
UI SERVINGS BACON 2.0

[NP3491/6] 3.h02buc.15

nag ip mps read NAG C Library Manual

12.3. Program Results

Example 2: use of options structure.

Optional parameter setting for h02buc.

Option file: stdin

list set to FALSE
output_level set to Nag_NoOutput
prob_name set to DIET2

Parameters to h02bbc

Linear constraints............ 3 Number of variables........... 6
Number of integer variables... 6

prob.................... Nag_MILP
feas_tol................ 1.05e-08 machine precision....... 1.11e-16
inf_bound............... 1.00e+20 max_iter................ 50
first_soln.............. FALSE max_depth............... 10
max_nodes...............ALL_NODES int_tol................. 1.00e-05
int_obj_bound........... 1.00e+20 soln_tol................ 1.05e-08
nodsel..........Nag_MinObj_Search varsel..............Nag_First_Int
branch_dir........Nag_Branch_Left crnames..................supplied
print_level.........Nag_Soln_Iter
outfile................. stdout

Memory allocation:
lower................... Nag
upper................... Nag
state................... Nag
lambda.................. Nag

Node Parent Obj Varbl Value Lower Upper Value Depth
No Node Value Chosen Before Bound Bound After
1 9.250e+01
2 1 9.385e+01 4 4.50e+00 0.00e+00 4.00e+00 4.00e+00 1
3 1 9.319e+01 4 4.50e+00 5.00e+00 8.00e+00 5.00e+00 1
4 3 9.612e+01 5 1.81e+00 0.00e+00 1.00e+00 1.00e+00 2
5 3 9.482e+01 5 1.81e+00 2.00e+00 2.00e+00 2.00e+00 2
6 2 9.450e+01 6 3.08e-01 0.00e+00 0.00e+00 0.00e+00 2
7 2 9.688e+01 6 3.08e-01 1.00e+00 2.00e+00 1.00e+00 2
8 6 9.737e+01 3 5.00e-01 0.00e+00 0.00e+00 0.00e+00 3
9 6 9.650e+01 3 5.00e-01 1.00e+00 2.00e+00 1.00e+00 3
10 5 9.569e+01 1 3.27e+00 0.00e+00 3.00e+00 3.00e+00 3
11 5 9.700e+01 1 3.27e+00 4.00e+00 4.00e+00 4.00e+00 3
*** Integer Solution ***

12 10 9.619e+01 4 5.19e+00 5.00e+00 5.00e+00 5.00e+00 4
13 10 9.945e+01 CO 4 5.19e+00 6.00e+00 8.00e+00 6.00e+00 4
14 4 9.646e+01 4 7.12e+00 5.00e+00 7.00e+00 7.00e+00 3
15 4 9.733e+01 CO 4 7.12e+00 8.00e+00 8.00e+00 8.00e+00 3
16 12 9.644e+01 6 1.15e-01 0.00e+00 0.00e+00 0.00e+00 5
17 12 1.067e+02 CO 6 1.15e-01 1.00e+00 2.00e+00 1.00e+00 5
18 16 9.751e+01 CO 3 1.88e-01 0.00e+00 0.00e+00 0.00e+00 6
19 16 1.035e+02 CO 3 1.88e-01 1.00e+00 2.00e+00 1.00e+00 6
20 14 9.662e+01 6 7.69e-02 0.00e+00 0.00e+00 0.00e+00 4
21 14 1.005e+02 CO 6 7.69e-02 1.00e+00 2.00e+00 1.00e+00 4
22 9 9.850e+01 CO 4 3.50e+00 0.00e+00 3.00e+00 3.00e+00 4
23 9 9.719e+01 CO 4 3.50e+00 4.00e+00 4.00e+00 4.00e+00 4
24 20 9.734e+01 CO 3 1.25e-01 0.00e+00 0.00e+00 0.00e+00 5

Node Parent Obj Varbl Value Lower Upper Value Depth
No Node Value Chosen Before Bound Bound After
25 20 1.001e+02 CO 3 1.25e-01 1.00e+00 2.00e+00 1.00e+00 5
26 7 1.052e+02 CO 4 2.88e+00 0.00e+00 2.00e+00 2.00e+00 3
27 7 9.705e+01 CO 4 2.88e+00 3.00e+00 4.00e+00 3.00e+00 3

3.h02buc.16 [NP3491/6]

h – Operations Research h02buc

Final solution:

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

OATMEAL EQ 4.00000e+00 4.0000e+00 4.0000e+00 3.000e+00 0.000e+00
CHICKEN LL 0.00000e+00 0.0000e+00 3.0000e+00 2.400e+01 0.000e+00
EGGS LL 0.00000e+00 0.0000e+00 2.0000e+00 1.300e+01 0.000e+00
MILK LL 5.00000e+00 5.0000e+00 8.0000e+00 9.000e+00 0.000e+00
PIE EQ 2.00000e+00 2.0000e+00 2.0000e+00 2.000e+01 0.000e+00
BACON LL 0.00000e+00 0.0000e+00 2.0000e+00 1.900e+01 0.000e+00

Constr State Value Lower Bound Upper Bound Lagr Mult Residual

ENERGY FR 2.08000e+03 2.0000e+03 None 0.000e+00 8.000e+01
PROTEIN FR 6.40000e+01 5.5000e+01 None 0.000e+00 9.000e+00
CALCIUM FR 1.47700e+03 8.0000e+02 None 0.000e+00 6.770e+02

Exit from branch and bound tree search after 27 nodes.

Optimal IP solution found.

Final IP objective value = 9.7000000e+01

[NP3491/6] 3.h02buc.17

